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A condition for the synchronizability of a pair of extended systems governed by partial differential equations
�PDEs�, coupled through a finite set of variables, is commonly the existence of internal synchronization or
internal coherence in each system separately. The condition was previously illustrated in a forced-dissipative
system and is here extended to Hamiltonian systems using an example from particle physics. Full synchroni-
zation is precluded by Liouville’s theorem. A form of synchronization weaker than “measure synchronization”
is manifest as the positional coincidence of coherent oscillations �“breathers” or “oscillons”� in a pair of
coupled scalar field models in an expanding universe with a nonlinear potential, and does not occur with a
variant of the model that does not exhibit oscillons.
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The phenomenon of synchronized chaos, initially ex-
plored in low-order ordinary-differential-equation �ODE�
systems �1–3,8�, has been extended to partial differential
equations �PDEs� that describe a variety of systems of physi-
cal interest �4�. Chaos synchronization extends the paradigm
of synchronization of regular oscillators that is ubiquitous in
nature �5�. One seeks an understanding of the internal prop-
erties of a chaotic physical system that will allow a pair of
such systems, loosely coupled, to synchronize, despite sensi-
tive dependence on initial conditions. Spatially extended sys-
tems offer richer possibilities for relationships that fall short
of full synchronization than do ODE systems. In a geophys-
ical example previously studied �6�, it was seen that slaving
of small scales, a relationship that defines an inertial mani-
fold, was crucial to synchronizability. Here, it is suggested
that more general interscale relationships, as may give rise to
coherent structures within each system separately, are re-
quired for the synchronizability of the pair. The connection is
illustrated in a particle physics context: a toy model of a
scalar field in the expanding early universe �7�, a Hamil-
tonian system without an attractor. Weak scale relationships
allow oscillons �breathers� to persist and give rise to a new
form of synchronization defined by the coincidence in posi-
tion of oscillons in two coupled scalar field models. Con-
versely, where the dynamics do not admit such coherent
structures, vestiges of synchronization are lost.

In the non-Hamiltonian meteorological example described
in �6�, which we next review, two geophysical fluid systems,
representing planetary-scale wind patterns, are coupled only
through their medium-scale Fourier components. Each sys-
tem is given by a potential vorticity equation
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where the stream function � is the fundamental dynamical
variable, the Jacobian J�� , ·�= ��

�x
�·
�y − ��

�y
�·
�x gives the advective

contribution to the Lagrangian derivative D /Dt, there are
two horizontal layers i=1,2, and the potential vorticity q,
which generalizes angular momentum, is a derived variable

defined in terms of � in �6�. Potential vorticity is conserved
on a moving parcel, except for forcing Fi and dissipation Di.

Two models of form �1�, DqA /Dt=FA+DA and DqB /Dt
=FB+DB were coupled diffusively through one of the forc-
ing terms:
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where the flow has been decomposed spectrally and the sub-
script k� on each quantity indicates the wave-number k� spec-
tral component �suppressing the index i�. A background flow
q� forces each system separately. The set of coefficients �k�

c

was chosen to couple the two channels only in some medium
range of wave numbers. Band-limited coupling defined by �k�

c

replaces the coupling of two PDE systems at a discrete set of
points as in �4�.

The two systems synchronize over time in Fig. 1, where
the contours of � are streamlines that define the flow. The
synchronization is manifest as the coincidence of structures
of meteorological significance �“blocking patterns” that in-
terrupt the flow� in both space and time. That coincidence is
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FIG. 1. Stream function � �in units of
1.48�109 m2 s−1, averaged over layers i=1,2� describing the flow
at ��a� and �b�� initial and ��c� and �d�� final times, in a parallel
channel model with coupling of medium scale modes for which
�kx��kx0=3 or �ky��ky0=2, and �k��15 for the indicated numbers
n of time steps in a numerical integration. Parameters are as in �6�.
Synchronization occurs by the last time shown, in �c� and �d�, de-
spite differing initial conditions. The blocking patterns in the boxed
areas coincide �9�.
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robust against significant differences in the two systems �6�.
The large scales need not be coupled because of well-

known dynamical relations between scales �“inverse cas-
cade”� in 2D turbulence �9�. But the stronger result �6� that
synchronization occurs without coupling of the smallest
scales is explained simply: the smallest-scale components are
thought not to be independent dynamical variables but are
functions of the medium- and large-scale components, defin-
ing a dynamically invariant inertial manifold. Where the set
of variables that are coupled is smaller than a minimal inde-
pendent set, synchronization does not occur. Partial synchro-
nization of forced-dissipative systems will usually be easy to
arrange, as previously found by Kocarev et al. �4�, since
approximate inertial manifolds �AIMs� exist for almost all
parabolic PDEs �10�.

In Hamiltonian systems, the subject of the current work,
inertial manifolds cannot exist since the stability of such a
manifold would imply a collapse of phase space volumes for
trajectories that start off the manifold, contradicting Liou-
ville’s theorem. A simple example is the Klein-Gordon equa-
tion in an expanding background geometry, in one space and
one time dimension with cyclic boundary conditions, with a
nonlinear potential of a type that gives rise to oscillons, pos-
sibly representing the first coherent structures in the universe
�7�. The field satisfies

�2�

�t2 + H
��

�t
− e−2Ht�

2�

�x2 + V���� = 0, �3�

where H is a Hubble constant, the potential V is given by
V���= �1 /2��2− �1 /4��4+ �1 /6��6 for units in which the
scalar field mass m=1, and the prime denotes the derivative
with respect to �. Equation �3� is derived by replacing de-
rivatives in the standard Klein-Gordon equation by covariant
derivatives for a Robertson-Walker metric describing expan-
sion with Hubble constant H �11�, giving a term in �� /�t that
formally resembles friction but which in fact preserves the
Hamiltonian structure. Indeed, system �3� is derivable from a
time-dependent Hamiltonian density

H = �1/2�e−Ht���x�2 + �2� + eHtV��� , �4�

where ��eHt�̇ is the canonical momentum that is conjugate
to �. Subscripts here denote partial derivatives. Liouville’s
theorem applies even with the time dependence so that nei-
ther an inertial manifold, in the strict sense, nor an AIM with
a usefully small approximation bound can exist.

Oscillating coherent structures appear as regions of high-
energy density at final time, in the numerical integration
shown in Fig. 2�a�, after initializing with thermal noise as in
�7�, with zero-point quantum fluctuations also represented.

Consider two systems �Eq. �3�� coupled diffusively,
through some Fourier components of the field only, accord-
ing to
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with the coupling coefficients ck=0 vanishing above a
threshold value �k��k0 and set to a large value for �k��k0 so
that corresponding large scale components in the two sys-
tems are effectively clamped. For coupling of the lowest
wave-number modes, up to wavelengths of about twice the
final oscillon width, oscillons in the two systems were found
to occur at mostly the same locations though their amplitudes
differed, as shown in Fig. 3�a�. In contrast, if the two systems
were left completely uncoupled, but shared initial conditions
over a range of scales, and only the smallest scales, well
below the oscillon widths, were initialized differently, then
oscillons formed at locations that were uncorrelated �Fig.
3�b��. Apparently, there is a “butterfly effect,” as in meteo-
rology, through which the small scales have a large impact
on the positions of formation of coherent structures �12�. But
the dynamical evolution of these structures then partially
slaves a portion of the small-scale sector �as with shock
waves� and proceeds independently of the remaining portion.

a)

b)

FIG. 2. Energy density 	= �1 /2�e−Ht��x�2+ �1 /2�eHt��t�2

+eHtV��� vs position x for �a� a numerical simulation of Eq. �3�
suggesting localized oscillons and �b� a simulation of the same
equation but with a different potential V���= �1 /2��2+ �1 /4��4

+ �1 /6��6 for which oscillons do not occur, shown for comparison.

a) b)

FIG. 3. �a� The local energy density 	 vs x for two concurrent
simulations �solid and dashed lines, resp.� of the oscillon system
�Eq. �3��, coupled according to Eqs. �5� and �6�, with coupling
coefficient ck=2 for k�64 and ck=0 otherwise, at final time. �	 for
the second system �dashed line� is also shown reflected across the x
axis for ease in comparison.� The coincidence of oscillon positions
is apparent; �b� local energy density 	 vs x at final time for two
simulations of the oscillon system, plotted as in �a�, but with com-
mon initialization of all modes with k
0.8�214, and no subse-
quent coupling between the two systems. Oscillon positions appear
uncorrelated.
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With severely attenuated initial noise �Fig. 4�a��, oscillon
synchronization occurs with an even narrower range of
coupled wave numbers. The large-scale components �k�32�
of the same oscillons are shown in the bottom portion of Fig.
4�b�. For four of the five oscillons shown, the oscillon posi-
tions are coincident with the local maxima of the truncated
field. For the remaining one �the leftmost�, the oscillon is
displaced from the local maximum of the truncated field but
is still coincident with the corresponding oscillon in the other
system �Fig. 4�a��. The small-scale Fourier components, in
both situations, are slaved to the large-scale components in-
sofar as they determine oscillon position.

Coincidence of oscillon positions suggests measure syn-
chronization, the weak form of synchronized chaos in which
the trajectories of two coupled systems become the same
when the systems are coupled, without a requirement that the
states of the systems are the same at a given instant of time
�13,14�. Measure synchronization is characteristic of jointly
Hamiltonian coupled systems. Here, the coupled oscillon
systems do not quite attain measure synchronization since
the corresponding oscillons differ in amplitude, and the con-
figuration �Eq. �5��, which can be written as

�̇k
A,B = e−Ht�k = �HA,B/��k

A,B, �7�

�̇k
A,B = − �HA,B/��k

A,B + ck��k
B,A − �k

A,B� , �8�

is not derivable from a joint Hamiltonian. �It would be
Hamiltonian if the second term in Eq. �8� were to be replaced
by ck��k

B,A−�k
A,B�.� But even without the joint Hamiltonian

structure, complete synchronization is not likely achievable
by coupling a finite number of modes if the remaining infi-
nite number are not slaved.

In a comparable system without oscillons, there are no
vestiges of synchronization. Correlations between corre-
sponding modes in the coupled systems are displayed in �a�
of Table I for the oscillon system, and in �b� of Table I for an
alternate pair of systems with potential V=Valt���= �1 /2��2

+ �1 /4��4+ �1 /6��6 in Eq. �3�, for which no oscillons form,
as seen in Fig. 2�b�. �Oscillons occur in one case and not the
other because the −�4 term in the first case gives a flatter
potential so that larger amplitude oscillations have lower fre-
quencies and decouple from the faster and smaller traveling

wave solutions that would otherwise cause them to dissi-
pate.� While there are small but significant correlations be-
tween some of the uncoupled modes in �a� of Table I, corre-
sponding to the small partially slaved portion of the small-
scale sector, no significant correlations appear between
corresponding small-scale components that are not coupled
in �b� of Table I. The correlations in the case with oscillons
are expected to extend to much shorter wavelengths in longer
simulations that approach the oscillon lifetimes as the oscil-
lons decrease in width �in comoving coordinates� and back-
ground fluctuations decrease in amplitude �7�.

The synchronization results for oscillons suggest a unify-
ing principle governing synchronization in both Hamiltonian
and forced-dissipative systems: two complex systems of ei-
ther type can be made to synchronize, with a restricted set of
coupled variables, if and only if each system exhibits syn-
chronization internally. Sufficiency of the condition follows
from transitivity if the internal synchronization is exact: any
external coupling that does not destroy the internal relation-
ships and causes some pairs of variables in the two systems
to agree will also cause all variables that internally synchro-

TABLE I. Correlations between coefficients of corresponding Fourier components of the independent dynamical variables in �a� the A
and B subsystems of the coupled scalar field system �Eq. �5�� and in �b� the same system with the potential Valt. The Fourier coefficients,
indexed by n, are partitioned into coupled modes with wave number k= ��n+1� /2�, 0�n
128 �in cycles/domain length�, and several ranges
of uncoupled modes. Error bars for the first range of uncoupled modes are at 2�, where � was computed as the standard error of the mean
based on a further partitioning into odd and even n. Uncoupled modes correlate significantly only with a nonlinear potential that supports
oscillons.

�a� Correlations with V=�2 /2−�4 /4+�6 /6 �b� Correlations with Valt=�2 /2+�4 /4+�6 /6

� �� /�t � �� /�t

Coupled modes: 0�n
128 1.00 1.00 1.00 1.00
Uncoupled modes: 128�n
256 0.31
0.04 0.18
0.18 −0.06
0.04 0.17
0.18
Uncoupled modes: 256�n
384 0.08 0.00 0.06 −0.14
Uncoupled modes: 384�n
512 0.02 0.04 0.04 0.00
All uncoupled modes: 128�n
16258 0.08 0.00 0.00 0.01
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FIG. 4. �a� The local energy density 	 vs x for two simulations
of the oscillon system �Eq. �3��, coupled according to Eqs. �5� and
�6�, with coupling coefficient ck=2 for k�32 and ck=0 otherwise,
at final time, displayed as in Fig. 3. The initial noise level was
severely attenuated as compared to the thermal initialization used in
the simulation in Fig. 3: the amplitude of the nth Fourier component
at initial time was multiplied by �1 /n�0.35. �b� Local energy density
	 vs x at final time for one of the two simulations shown in panel
�a�, with the part of 	 corresponding to k�32 shown reflected in the
negative-y portion of the panel �where y is rescaled for clarity�.
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nize with the coupled variables to agree with their counter-
parts in the other system. In the cases considered here, the
condition also appears necessary. Localized coherent struc-
tures such as oscillons, as well as long-range connections
such as the Atlantic-Pacific “teleconnection” described pre-
viously �6,9�, can be regarded as approximate forms of inter-
nal synchronization. Where a master set of variables, in Fou-
rier space, synchronizes with the entire remaining infinite
set, an inertial manifold exists. Local coherence has been
described as synchronization of a more limited type in PDEs
�15� and in lattices of coupled maps �16�.

The internal synchronization condition also provides
guidance as to the choice of coupled variables. If the ex-
tended systems are “truth” and a “computer model” to which
truth is coupled in one direction only, via observations, as in
meteorology �17�, then a set of variables should be observed
that is synchronized with a maximal set of other variables
internally.

An internal coherence criterion applies to ODE systems,
consistently with Pecora and Carroll’s criterion of negative
“conditional Lyapunov exponents” in the Lorenz system �1�.
Lorenz X can be said to approximately synchronize with Lo-
renz Y, along the near-planar Lorenz attractor, in agreement
with the well-known fact that sufficiently strong coupling of
either X or Y in one system to the corresponding variable of
a second Lorenz system will synchronize the two systems.
Coupling of the Z variables that do not correlate internally
with either X or Y will not do so. But the internal coherence
criterion is much more useful for PDEs that describe spa-
tially extended systems both because such systems are less
tractable analytically—a full set of conditional Lyapunov ex-
ponents is hard to compute—and because the coherent struc-
tures are more meaningful physically.

For Hamiltonian systems coherent structures seem to bear
strongly on synchronizability and on the form of synchroni-
zation. The ubiquity of coherent structures in solutions to
nonlinear PDEs is the basis on which potentially broad rel-
evance is claimed for the current work. Solitons, for in-
stance, in a pair of PDE systems that exhibit them, might
also be made to coincide in position and to move in syn-

chrony if only a restricted set of corresponding Fourier com-
ponents of the two fields are coupled. The question is
whether the internal dynamics that allow the structures to
exist in each system would cause the needed parts of the
uncoupled components to follow. The phenomenon, if it ex-
ists, might be used for secure communications in the same
manner as the systems considered in �4�.

The present generalization differs from measure synchro-
nization �13� in several notable respects: first, in an ergodic
system with trajectories that define a uniform measure, such
as the system with modified potential Valt that exhibits no
oscillon behavior, measure synchronization is trivial. Second,
as already pointed out, positional coincidence of coherent
structures that differ in amplitude or detailed shape is more
general than measure synchronization. Third, there is no re-
quirement that the combined system be Hamiltonian to ex-
hibit the weak form of synchronization described here. The
impossibility of strict synchronization follows not from the
joint Hamiltonian structure but from the impossibility of
slaving or approximately slaving all uncoupled variables in
each system separately.

The types of synchronization appear to be equivalent, in
their details, to detailed interscale relationships within each
system internally, which in the present case allow oscillons
to persist and to stably maintain their positions. The partial
agreement of small scales between the two synchronized sys-
tems, sufficient to force coincidence in oscillon position
when large scales are clamped, indeed defines a partial slav-
ing that counters the butterfly effect. For consistency with
Liouville’s Theorem, there must be a compensating expan-
sion of the remaining part of the uncoupled modes in phase
space, as entropy is cast off to scales that are yet smaller.
Details of the partial slaving remain to be worked out. The
existence and the form of synchronization may provide diag-
nostics for the slaving relationships.
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